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We extend the insertion approach for calculating depletion potentials to the case of nonspherical solutes. We
suggest to employ the recently developed curvature expansion of density profiles close to complexly shaped
walls. The approximations introduced in the calculation by the use of the curvature expansion and of weight
functions for nonspherical objects can be tested independently. As an application for our approach we calculate
and discuss the depletion potential between two hard oblate ellipsoids in a solvent of hard spheres. For this
system we calculate the entropic force and torque acting on the objects.
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I. INTRODUCTION

If macromolecules such as colloids are immersed in a
solvent of smaller particles, the difference in size makes it
useful to describe this mixture in terms of effective interac-
tions by integrating out the degrees of freedom of the sol-
vent. The resulting interactions between particles of the re-
maining larger component are often referred to as depletion
interactions. Such depletion forces have been studied in de-
tail both theoretically �1–6� and experimentally �7–9�. Most
theoretical approaches are based on a brute-force approach in
which the solutes are frozen in a given configuration and
thereby turned into an external field for the solvent �3,4,10�.
From the inhomogeneous structure of the solvent in the ex-
ternal field due to two fixed solute particles one can calculate
the solvent mediated effective force acting on the solutes.
This brute-force approach turns out to be very time consum-
ing because for each separation and orientation, for which
one wants to determine the depletion force, the inhomoge-
neous solvent distribution has to be calculated anew.

The insertion approach to depletion potentials �6� differs
in character in that there only one solute particle is fixed. The
advantage is that the calculation of the solvent density profile
in the external field of a single solute is usually much simpler
and hence computationally less demanding. The potential of
the depletion force can be determined from the solvent den-
sity profile close to one solute by inserting the second solute
into the system using the potential distribution theorem �11�.
However, for the insertion step a theoretical description of a
mixture consisting of solute and solvent particles is required.
The insertion approach is usually implemented within den-
sity functional theory �DFT�. If one of the solutes is spherical
by using integral-equation theory it is also possible to calcu-
late depletion potentials in a single step from the knowledge
of the density distribution of the solvent �12,13�.

So far, most studies of depletion forces have been focused
on rather simple geometries, such as the force between a big
sphere and a planar wall or between two big spheres in a
solvent of small spheres. For these symmetric systems the
depletion potential depends on the sphere-wall or the sphere-
sphere separation as the only parameter characterizing the
configuration. In addition, for these geometries the use of the
aforementioned insertion approach is facilitated by the avail-

ability of reliable density functional theories for hardsphere
mixtures.

In colloidal mixtures one often encounters more complex
particle shapes both of the solute and solvent particles. How-
ever, the understanding of depletion potentials for nonspheri-
cal objects is still rudimentary. The corresponding calcula-
tions are much more challenging because in these cases the
depletion potential depends not only on the separation be-
tween the solutes but also on their relative orientation. Based
on depletion potentials, it is possible to study the complex
phase behavior of colloidal mixtures within an effective one-
component Hamiltonian. Furthermore, our approach should
prove useful for the study of effective interactions between a
complexly shaped macromolecule and a cavity, which serves
as a biologically inspired model system of a key and lock
system �12�.

A first extension beyond the mixture of spheres is the case
of spherical solutes immersed in a solvent of nonspherical
particles. Depletion agents such as thin rods �14–17� or infi-
nitely thin platelets �18–20� can generate big depletion ef-
fects even at rather low solvent concentrations �9�. The
depletion potential in these cases can be calculated in the
limit of small solvent densities so that correlations among the
depletion agents are small. Similar in spirit is also the calcu-
lation of the depletion force between spheres in a solvent of
a liquidcrystal in its nematic phase �21,22�, for which the
strong correlations between particles of the liquid crystal are
taken into account effectively by reducing their orientational
degrees of freedom. The strength of the depletion interaction
is then estimated by excluded volume calculations, following
the ideas of Asakura and Oosawa �1,2�.

A second, more complicated situation is the one studied in
Ref. �23�, where one spherocylinder immersed in a spherical
solvent close to a planar wall was considered. These calcu-
lations employed the insertion approach. The resulting deple-
tion potential depends not only on the separation of the sol-
ute from the wall but also on its orientation. Hence in
addition to the depletion force an entropic torque acts on the
solute.

There are recent studies of depletion forces between two
spherocylinders in a solvent of spheres which overcome the
Asakura-Oosawa approximation �1,2�. Using a three-
dimensional integral-equation theory, Kinoshita �10,13�
showed that the corresponding depletion potential displays a
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rich behavior and depends sensitively on the path along
which the spherocylinders approach each other. Similar find-
ings were reported in a simulation study, in which the deple-
tion potential was determined by the acceptance ratio method
�24�.

Here we extend the insertion approach to depletion poten-
tials �6� to the case of nonspherical objects. In Sec. II we
recall the basic theory and highlight how the geometry of the
solutes can be accounted for. We test the elements of the
theory in Sec. III. As an application we discuss the depletion
potential between two ellipsoids in Sec. IV. We conclude in
Sec. V.

II. THEORY

We follow the versatile and successful approach to calcu-
lating depletion potentials between two objects, a and b, im-
mersed in a solvent within the framework of DFT �6�, which
is referred to as the insertion approach. To this end we fix
one of the objects, say a, at the origin at a given orientation
so that it acts as an external potential for the solvent par-
ticles. In response to this external potential, the solvent par-
ticles aquire an inhomogeneous equilibrium number density
distribution �s�r�. In the fluid phase, the case we are inter-
ested in here, �s�r� shares the spatial symmetry with that of
object a. If object a is a sphere, the density distribution �s�r�
also possesses spherical symmetry. In a second step we insert
the second object, denoted by b, into the inhomogeneous
solvent at position r and with relative orientation �. As a
result of this insertion the grand potential ��r ,�� of the
system changes. The depletion potential is given by �6�

W�r,�� = ��r,�� − ��r → � ,�� , �1�

which can be rewritten in terms of the one-body direct cor-
relation function cb

�1��r ,��=−��Fex /��b�r ,�� �6�:

�W�r,�� = cb
�1��r → � ,�� − cb

�1��r,�� . �2�

For the numerical calculation of cb
�1��r ,�� two challenges

have to be overcome: �i� the accurate calculation of the den-
sity profile �s�r� of solvent particles around an object of
complex shape, and �ii� the insertion of a nonspherical object
into an inhomogeneous solvent of spheres. Since both of
these problems require nonstandard approaches, in the fol-
lowing we shall pay special attention to them.

Although our approach is flexible and can also treat soft
solvent-solvent and solute-solvent interactions, in the follow-
ing we shall restrict our considerations to the case of hard-
core interactions. The solvent is represented by a hard-sphere
fluid characterized by its radius R and bulk density �s or bulk
packing fraction �s=4�R3�s /3. The solute-solvent interac-
tion is infinitely repulsive in the case of overlap and zero
otherwise.

A. Density profiles and weighted densities

1. Curvature expansion

Concerning the first issue of calculating the density profile
around nonspherical objects we apply ideas of the recently

suggested and successfully tested curvature expansion of the
density profile �25�. The curvature expansion is expected to
represent the density distribution around the nonspherical ob-
ject more accurately than a corresponding three-dimensional
calculation on a cubical grid. For the present problem, it
turns out to be useful to take the intrinsic structure of
fundamental-measure theory �FMT� functionals �26� into ac-
count and to extend the idea of the curvature expansion to
other quantities like the free energy density and weighted
densities �see Sec. II A 3�.

We start by introducing normal coordinates. Any point r
outside the fixed object a can be reached from R as the point
closest to r on the parallel surface of the object, where the
density profile �s�r� vanishes discontinuously. This particular
surface is special to the case of hard-core solute-solvent in-
teraction; however, it is possible to employ any parallel sur-
face as long as all the calculations are in line with this defi-
nition of R.

For the vector connecting the points R and r one has R
−r=un�R�, where n�R� is the unit vector normal to the par-
allel surface at point R and u is the normal distance. At point
R the parallel surface exhibits two principle radii of curva-
ture R1 and R2 leading to the dimensionless mean and Gauss-
ian curvatures H�R�= �R /R1+R /R2� /2 and K�R�
=R2 / �R1R2�, respectively.

As an ansatz for the density profile we employ �25�

�s�r� = �s
P�u� + H�R��s

H�u� + K�R��s
K�u� + H�R�2�s

H2
�u�

+ H�R�3�s
H3

�u� + H�R�K�R��s
HK�u� ¯ , �3�

which factorizes the local geometry of object a at position R,
specified by the local mean and Gaussian curvature H�R�
and K�R�, respectively, and the structure of the solvent via
the coefficient functions �s

��u� with �= P ,H ,K , . . .. This sepa-
ration of geometry and the coefficient functions allows one
to infer �s

��u� from simple geometries with high symmetry,
such as a fluid close to planar, spherical, or cylindrical walls.
The functions �s

��u� have been determined in Ref. �25�. There
the direct comparison between a density profile predicted by
the curvature expansion, based on these coefficient functions
and obtained within DFT, with results from Monte Carlo
simulations has demonstrated the high accuracy of this ap-
proach. Note that the curvature expansion of the density pro-
file, Eq. �3�, implicitly assumes that the curvature of the fixed
object varies smoothly on its the surface. A sharp edge would
be problematic because the mean curvature jumps from zero
to a nonvanishing value at the edge.

2. Contact density on spherocylinders

On the surface of a spherocylinder both the mean and the
Gaussian curvature vary discontinuously where the spherical
cap meets the cylinder. Also this discontinuity of the curva-
tures cannot be captured fully by the curvature expansion.

In order to analyze the reliability of the curvature expan-
sion we have performed a Monte Carlo simulation of a hard-
sphere fluid exposed to a spherocylinder. As parameters we
have chosen �s=0.3 for the packing fraction of the fluid, L
=10R for the length of the cylinder, and Rsc=4R for the
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radius of the parallel surface at which the density profile
discontinuously drops to zero. In this test we focus on the
contact density �c�x� as the most sensitive quantity, where x
parametrizes a path along the surface as depicted in the inset
of Fig. 1. The density profile away from contact decays to-
ward the bulk density and we verified that the effects of the
discontinuity of the curvature decreases with increasing nor-
mal distance from the spherocylinder.

The dimensionless curvatures on the cylindrical part of
the surface are H=R / �2Rsc� and K=0, while they are H
=R /Rsc and K= �R /Rsc�2 on the spherical caps. Accordingly,
the curvature expansion predicts a jump in the contact value
of the density profile where the spherical caps meet the cyl-
inder. The result of the curvature expansion is plotted as the
full line in Fig. 1. Note that in Eq. �3� only the three terms
�s

P�u�, �s
H�u�, and �s

K�u� have a nonvanishing contact value
and hence contribute to �c�x� �25,27�.

In contrast to the jump of the contact density between
constant values as predicted by the curvature expansion, in
the computer simulations we find a smooth, slightly oscilla-
tory transition between the contact densities at the cylindrical
and the spherical part of the spherocylinder. In Fig. 1 the
simulation data for �c�x� are shown as symbols. Interestingly,
the spatial region of deviation between the simulation data
and the prediction of the curvature expansion is relatively
narrow.

3. Curvature expansion of the free energy density
and of weighted densities

Although the density profile �s�r�, as given by Eq. �3�, is
in principle sufficient for the calculations we intend to per-

form, it is numerically more efficient to exploit the particular
form of fundamental-measure theory functionals �26� and ex-
tend the idea of the curvature expansion to weighted densi-
ties and the free energy density, i.e., to auxiliary functions of
the FMT functional. Within FMT the one-body direct corre-
lation function is given by

cb
�1� = − �

	

�


�n	

� w	
b , �4�

where 
 is the excess free energy density and �	

��
 /�n	 depends on �s�r� in a complicated, nonlinear way.
The convolution product is denoted as � . Instead of calcu-
lating �	 from �s�r� directly, we argue that �	�r� can be
equivalently expanded in terms of powers of H and K and
therefore can be written

�	�r� = �	
P�u� + H�R��	

H�u� + K�R��	
K�u� + ¯ . �5�

One can adopt the point of view that curvature expansions
such as those given in Eqs. �3� and �5� are merely approxi-
mations of the functions �s�r� or ��r� that take the shape of
the external potential into account in an efficient way. Within
this line of arguments there is nothing special about the den-
sity distribution or any other function entering the DFT. Even
auxiliary functions such as the weighted densities n	�r� and
�	�r� have a curvature expansion ensuring that the output of
the DFT calculation has the form of Eq. �3�.

A more systematic, albeit more involved, point of view,
which we present here only as a sketch, starts with an ap-
proach similar in spirit to the one that leads to Eq. �3� �25� as
a suitable form for the density profile. Here, however, we
analyze the weighted densities, defined as follows:

n	�r� =� dr��s�r��w	�r,r�� , �6�

close to planar, spherical, and cylindrical walls. Our results
suggest that analogous to the density profile �Eq. �3�� the
weighted densities can also be expanded in terms of powers
of the curvatures H and K. As in Ref. �25� we can determine
uniquely the coefficient functions n	

� for �
= P ,H ,K ,H2 ,HK ,H3 up to third order in the inverse of the
radii of curvatures inferred from planar, spherical, and cylin-
drical geometries. In order to obtain higher order contribu-
tions one would have to consider more complex wall shapes.
The numerical accuracy of weighted densities calculated at
more complex walls is, however, unsatisfactory and practi-
cally prevents a reliable decomposition into coefficient func-
tions. Since we are interested in calculating the depletion
potential between two big nonspherical objects immersed in
a solvent of small spheres, the coefficient functions which
we have determined are sufficient. For our approach to be
quantitatively reliable, curvatures of the surface of the non-
spherical objects should always be sufficiently small.

We therefore use as an ansatz for the weighted densities,
following Ref. �25�,

n	�r� = n	
P�u� + H�R�n	

H�u� + K�R�n	
K�u� + ¯ , �7�

which we can insert into the free-energy density 
 or its
derivative with respect to n	, i.e., �	. Both 
 and �	 are

FIG. 1. The contact density �c�x� of a fluid of hard spheres with
radius R and packing fraction �s=0.3 at a hard spherocylinder with
length L=10R and radius Rc=3R so that the contact density occurs
at Rsc=4R. The path on the parallel surface of contact of the sphero-
cylinder is parametrized by x, as is indicated by the dotted line in
the inset. Note that the inset is not drawn to scale. According to the
curvature expansion the contact value �c�x� jumps at x=L /2, where
the cylindrical and the spherical parts meet, as shown by the full
line. The symbols denote data from Monte Carlo simulations for
�s=0.3.
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highly nonlinear functions of n	. However, by Taylor ex-
panding 
 or �	 into powers of n	 and by rearranging terms
one can see immediately that the curvature expansions of �	

follow directly from Eq. �7�.

B. Insertion of nonspherical objects

We now turn to the second part of the present problem,
i.e., the calculation of the insertion free energy �Eq. �2�� of
the nonspherical object b. Note that the change in the grand
potential due to the insertion of object b into a homogeneous
bulk fluid at r→� can be described by using the morpho-
metric approach �25,27�. In the bulk, the change in the grand
potential of the system cannot depend on the orientation of
the inserted object, which simplifies the problem somewhat.
Furthermore, it was shown that the problems even simplify
further due to the separation of the geometry and the shape
independent thermodynamical coefficients. In the morpho-
metric approach, the insertion free energy of object b in a
bulk fluid can be written �25,27�

− �−1cb
�1��r → � ,�� = pVb + �Ab + Cb + ̄Xb, �8�

where p, �, , and ̄ are the pressure, the planar wall surface
tension, and two bending rigidities, respectively, which de-
pend on the state of the bulk fluid and the interaction be-
tween the fluid and object b. These coefficients can be ob-
tained in simple geometries. The corresponding geometrical
measures Vb, Ab, Cb, and Xb describing the shape of object b
are the volume, the surface area, and the integrated �over the
surface area� mean and Gaussian curvature, respectively.

In order to calculate the convolutions in Eq. �4� the
weight functions w	

b for a nonspherical object are required.
For this problem we employ Rosenfeld’s formulation of fun-
damental measure theory generalized to convex hard bodies
�28,29�. There are four scalar weight functions:

w3
b�r� = �„�r − Rb��,���… , �9�

which defines the volume Vb of object b,

w2
b�r� = �„r − Rb��,��… , �10�

which defines the surface area Ab of b,

w1
b�r� =

H�r�w2
b

4�
, �11�

which defines the integrated �over the surface� mean curva-
ture Cb of b, and

w0
b�r� =

K�r�w2
b

4�
, �12�

which defines the integrated �over the surface� Gaussian cur-
vature or Euler characteristics Xb of object b. Besides the
scalar weight functions, which represent the geometrical
properties of b, there are two additional vectorlike weight
functions which are required for the deconvolution of the
Mayer f function describing the interaction between non-
spherical particles. The vectorlike weight functions are given
by

w2�r� = − �w3
b�r� = nb�r��„r − Rb��,��… , �13�

where nb�r� is the unit vector of the surface normal at point
r, and

w1�r� =
H�r�w2�r�

4�
. �14�

In a bulk system the vectorlike weighted densities n2�r� and
n1�r� vanish. These weight functions have been employed
successfully in the calculation of the depletion potential be-
tween a hard spherocylinder and a planar hard wall �23�.

With Eqs. �2� and �4� we can now calculate the depletion
potential W�r ,��.

C. Force and torque

From the knowledge of the depletion potential W�r ,�� it
is possible to determine the entropic force and the entropic
torque �23� acting on object b with orientation � at a given
position r. If object b is translated by an infinitesimal vector
�r, while keeping its orientation fixed, the depletion potential
changes by �W=−F ·�r, which defines the depletion force

F�r,�� = −
�

�r
W�r,�� . �15�

The torque acting on the object b can be calculated by a
similar consideration, rotating object b by an infinitesimal
angle ��. The direction of �� is parallel to the axis of ro-
tation and its modulus specifies the angle of rotation. If one
keeps the center of b fixed at r and performs a rotation by
��, the depletion potential changes by �W, so that �W
=−M ·��. Therefore we can write the entropic torque as �23�
follows:

M�r,�� = −
�

��
W�r,�� . �16�

III. TEST: DEPLETION POTENTIALS BETWEEN
ELLIPSOIDS AND SPHERES

Before we apply the above formalism to the calculation of
the depletion potential between two nonspherical objects, we
perform a test that enables us to estimate the errors intro-
duced into the numerical calculation through the approxima-
tions we have made. One source of error is the use of the
curvature expansion of the density profile �s�r� �Eq. �3�� and
of the derivatives �	�r� of the excess free-energy density
�Eq. �5��. It introduces an approximation because we have to
truncate the expansion after the third order in the inverse
radii of curvature. Another source of error is the application
of the FMT weight functions for nonspherical objects, which
introduces a different approximation. The fact that these two
approximations are very distinct in nature allows us to per-
form a stringent numerical test.

To this end we calculate the depletion potential between
one big sphere and one big ellipsoid in a solvent of small
spheres. In an exact treatment the depletion potential be-
tween these two objects would depend only on their relative
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position and orientation. In the numerical implementation of
the insertion method we can follow two different routes
which make independent use of the different approximations.
We can choose to fix either the sphere and insert the ellipsoid
or fix the ellipsoid and insert the sphere. By the choice of the
particle fixed at the origin we decide about the symmetry of
the external potential and how to calculate the density distri-
bution of the solvent.

If we choose to fix the big sphere the calculation of the
density profile �s�r�=�s�r� is straightforward and, using the
spherical symmetry of the problem, it was established that
the results agree extremely well with, e.g., Monte Carlo
simulations. Along this route, the main approximation for the
calculation of W�r ,�� stems from using the weight functions
for the ellipsoid.

Note that the resulting depletion potential W�r ,�� de-
pends on both the orientation � of the ellipsoid relative to
the vector r connecting the centers of the ellipsoid and the
sphere and the distance r between the ellipsoid and the
sphere. For this test, however, we fix the orientation and
consider the approach between the ellipsoid and the sphere
along the surface normal of the sphere for the chosen orien-
tation of the ellipsoid. In Fig. 2 we show the depletion po-
tential between a big sphere, denoted as object a, with radius
Ra=10R and an oblate ellipsoid with half axes �10,10,4�R
�a�, and between a sphere with radius Ra=10R and a prolate

ellipsoid with half axes �4,4 ,10�R �b�. In both cases the
solvent is a fluid of small spheres with a packing fraction
�s=0.3, which we model by the White Bear version of FMT
�30,31�. The insets in Fig. 2 depict the orientation between
the ellipsoids and the sphere chosen in the calculation. The
symbols denote the results obtained via the first route, corre-
sponding to a fixed sphere.

Along the second route, we fix the ellipsoid at the origin
so that it acts as an external potential for the solvent spheres.
Now we employ the curvature expansion �Eq. �5�� in order to
evaluate the derivatives of the excess free energy density
�	�r�. The weight functions we need in order to describe the
insertion of the big sphere in Eq. �4� are well tested and are
known to be accurate �6�. The results for the depletion po-
tentials along the same paths between the sphere and the
oblate and prolate ellipsoid obtained from this route are
shown in Fig. 2 as lines.

We find that the results obtained from both routes agree
extremely well, which provides confidence in the reliability
of the approximations and the numerical approach. Only in
the case of the prolate ellipsoid, for which the curvatures are
considerably higher than in the case of the oblate ellipsoid,
we find some deviations between the two routes close to the
first potential barrier. However, these deviations are very
small.

Close to contact between the sphere and the ellipsoids,
one can employ arguments based on considerations about the
overlap of excluded volumes �1,2,5�. In the case of high
curvature one expects that the contact value of the depletion
potential is considerably reduced compared to cases of low
curvature. This expectation is confirmed by our results. In
addition to the contact value, we find that the amplitude of
the oscillations of the depletion potential for the oblate ellip-
soid �Fig. 2�a�� is larger than the one for the prolate ellipsoid
�Fig. 2�b��.

We conclude from the results of this test that both the
curvature expansion of the functions �	�r� and the insertion
of a nonspherical particle into an inhomogeneous solvent of
small spheres work reliably.

IV. APPLICATION: DEPLETION POTENTIALS
BETWEEN TWO ELLIPSOIDS

We can now turn to the calculation of the depletion po-
tential between two nonspherical, convex objects. In order to
accomplish this we have to combine both steps mentioned
and tested above. First we fix one of the two nonspherical
objects and thus turn it into an external potential for the
solvent of small spheres. The structure of the resulting inho-
mogeneous solvent density distribution at a given bulk den-
sity is captured by the curvature expansion given by Eq. �5�.
In the second step we employ the insertion of a nonspherical
object.

In order to illustrate our approach we calculate the deple-
tion potential between two hard oblate ellipsoids with half-
axes �10,10,4�R in a solvent of hard spheres with radius R
and bulk packing fraction �s=0.3. The resulting depletion
potential depends on both the relative orientation � of the
two ellipsoids and the vector r connecting their centers and

FIG. 2. Depletion interaction between an oblate �a� �prolate �b��
ellipsoid with half-axes �10,10,4�R ��4,4 ,10�R� and a sphere with
Ra=10R. The center of the inserted sphere approaches the north
pole of the fixed ellipsoid normal to the surface. Both particles
touch if u=Ra. The symbols denote results obtained by approach �i�,
for which we employ FMT for convex objects, and the lines denote
corresponding results from approach �ii�, for which we use the cur-
vature expansion. As both approaches involve approximations of
very different nature, the excellent agreement is very likely to be
due to the fact that the systematic error is very small in both ap-
proaches. We verified this observation also for ellipsoids with dif-
ferent half axes. For these data the depletion agent is a fluid of hard
spheres with radius R modeled via the White Bear version of FMT.
The bulk packing fraction is �s=0.3. Note that the insets here and
in the following figures are not drawn to scale.
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thus depends on six variables. Out of this high-dimensional
parameter space we select a few examples of paths along
which we study the behavior of the depletion potential.

In the first example, the center of the inserted ellipsoid
approaches the north pole of the fixed particle along the sur-
face normal, as shown in the inset of Fig. 3. For this path we
vary also the relative orientation � between the particles.
Due to the symmetry of this configuration the orientation
between the oblate ellipsoids can be expressed in terms of a
single angle, which we denote by �. If we choose �=90°, the
ellipsoids are parallel and the minimal separation of their
centers is zmin=8R. At contact the overlap of excluded vol-
ume is larger than for any other value of �. Hence the contact
value of the depletion potential is most negative. For our
choice of parameters we find �W�zmin ,�=90��	−12 �see
Fig. 3�. In addition to the strong attraction close to contact,
the depletion potential displays a pronounced oscillatory
structure away from the contact.

This oscillatory structure of the depletion potential re-
flects mainly the properties of the solvent. The structure of
the hard-sphere solvent normal to the surface displays oscil-
latory, exponentially decaying packing effects. We have
shown previously �6� that beyond the first maximum the
depletion potential between two spheres or between a sphere
and a planar wall decays in a closely related, exponentially
damped oscillatory fashion. The decay length and the wave-
length of the oscillations in the depletion potential are ex-
actly the same as those in the decay of the bulk pair corre-
lation function. Only the amplitude of this decay and the
phase of the oscillations depend on the shape and the orien-
tation of the two solutes.

As we decrease the value of � from 90° to 0, thereby
changing the relative orientation from parallel to normal, we
find that the contact value as well as the potential barrier at
z−zmin�R and the amplitude of the oscillations decrease
monotonically; the positions of the extrema and of the zeros
basically do not vary with �.

In the second example the ellipsoids always approach
each others north pole in a parallel configuration. The corre-
sponding path of the centers is a straight line forming an
angle 	 with the fixed direction of the small axes �see the
inset of Fig. 4�. In Fig. 4, by construction the path for 	=0 is
identical to the path with �=90° in Fig. 3. Upon increasing
	, at first the resulting depletion potential changes only
slightly but for angles 	�80° it is possible to observe a
clear decrease in the wavelength of oscillation, which is most
pronounced in the case of 	=90°. This, however, is not a
contradiction to the aforementioned universality of the oscil-
latory decay of the depletion potential, because this path cuts
through the three-dimensional oscillatory structure of the sol-
vent, which is organized normal to the surface of the fixed
solute, at the angle 	.

As pointed out earlier, for nonspherical objects it is also
possible to keep the distance between their centers constant
and change the relative orientation. From the corresponding
change in the depletion potential we can obtain the entropic
torque �23� acting on the inserted particle. For the same geo-
metrical setup as in Fig. 3 we calculate the torque M for
center to center separations �z /R=10, 12, 14, and 16. Due to
the symmetry of this setup the entropic torque acting on the
inserted ellipsoid, relative to its center, is parallel to the ro-
tation �, i.e., M��z ,��=M��z ,��n�, with n�=� /� and

FIG. 3. Depletion interaction between two oblate ellipsoids with
half-axes �10,10,4�R. The inserted particle approaches the north
pole of the first ellipsoid perpendicular to its surface. � denotes the
angle between the z axis and the large half axis of the inserted
ellipsoid �see the inset�. If both ellipsoids are aligned �as drawn in
the inset�, i.e., �=90°, the minimal separation of the centers is
zmin=8R, while for �=0 it is zmin=14R; zmin��=60° �
9.53R and
zmin��=30° �
12.57R. The positions of the extrema and the zeros
are basically independent of �. The solvent is a fluid of hard spheres
with radius R and bulk packing fraction �s=0.3 and is modeled via
the White Bear density functional.

FIG. 4. Depletion potential for the same setup as in Fig. 3 with
fixed �=90°. The angle 	 characterizes the straight line along
which the center of the inserted ellipsoid is moved away from its
contact position at the north poles �see the inset�. The abscissa
measures the normal �i.e., minimal� distance u of the center of the
inserted ellipsoid from the surface of the fixed one. For small 	 the
depletion potentials almost coincide due to the oblate shape
�10,10,4�R of the fixed ellipsoid.

KÖNIG, ROTH, AND DIETRICH PHYSICAL REVIEW E 74, 041404 �2006�

041404-6



M��z,�� = −
�W��z,��

��
. �17�

The symmetry of the problem leads to M��z ,��=0 for �
=0 and 90°. A positive value of the torque acts on the in-
serted ellipsoid as to increase the angle � �rotating it toward
an orientation parallel to the fixed ellipsoid�, while a nega-
tive value of M leads to a decrease of � �rotating it toward an
orientation normal to the fixed ellipsoid�. Some typical ex-
amples of the torque as a function of � for various values of
�z are shown in Fig. 5. For small values of �z the amplitude
of the torque is largest; however, the hard-core interaction
prohibits small values of � due to geometrical constraints.
For larger separations �z between the ellipsoids, the acces-
sible range of values of � increases until finally the inserted
ellipsoid can rotate freely without encountering the fixed el-
lipsoid. Due to the symmetry of the problem the torque van-
ishes for �=90° as well as for �=0, provided this orientation
is accessible.

If for any relative orientation of the ellipsoids the minimal
distance between the surfaces equals the diameter 2R of a
solvent spheres, the torque exhibits a cusp, as can be seen in
the cases of �z�10R. For �z=10R this orientation occurs at

�=90°. Accordingly, for sufficiently large �z no such cusps
occur.

All these feature of the torque �see Fig. 5� are similar to
those of the entropic torque acting on a spherocylinder close
to a planar wall �23�.

From these results, one can speculate how two freely
floating ellipsoids most likely would approach each other.
Similar to the case of a spherocylinder close to a planar wall
�23� we find that the ellipsoids prefer to be parallel once they
touch each other. This configuration corresponds to �=90° in
Fig. 3. In order to be able to overcome potential barriers
while approaching, it is easier for the ellipsoids to approach
with a relative orientation different from the parallel configu-
ration. By first seeking contact in regions of high curvature,
and then by adapting the orientation such that regions of low
curvature get in contact with each other, potential barriers,
which have to be overcome, are significantly reduced and the
minimum of the depletion potential can be reached. This
interpretation agrees with observations reported in Refs.
�10,13,24� where the depletion potential between two
spherocylinder was studied.

V. SUMMARY AND CONCLUSIONS

We have extended the density functional theory approach
for calculating depletion potentials �6� to effective interac-
tions between generally shaped convex particles with surface
curvatures which vary smoothly. As in the previously studied
�6� geometrically simple case of two spherical particles, it is
most efficient to carry out the calculation in two steps. In the
first step we obtain the inhomogeneous structure of the sol-
vent close to a fixed object. In the second step we insert the
second solute into the solvent and calculate the change in the
grand potential using the potential distribution theorem. Both
steps constitute new challenges due to the nonspherical ge-
ometry of the solutes.

For the calculation of the inhomogeneous solvent density
distribution, we have shown that the curvature expansion,
which previously was applied to study the density profile of
a fluid �25�, can be extended within FMT to an equivalent
curvature expansion of the derivatives �	 of the free energy
density �Eq. �5��. If the mean and Gaussian curvatures of the
surface of the solute vary smoothly across its surface, the
curvature expansion provides an efficient tool. Discontinui-
ties in the curvatures, such as those observed at sharp edges
or close to the spherical caps of a spherocylinder, cannot be
captured fully by the curvature expansion in its present form
�see Fig. 1�.

For the insertion of a second particle into the inhomoge-
neous solvent we employ an extension of fundamental mea-
sure theory to nonspherical particles �28,29�, which was used
in the study of a spherocylinder close to a planar wall �30�.
Since the curvature expansion of the density profile or of the
free energy density and the application of FMT to nonspheri-
cal objects introduce approximations, it is necessary to verify
the accuracy of our approach. To this end we have studied
the depletion potential between one ellipsoid and a big
sphere immersed in a hard-sphere solvent. In this case we
have been able to carry out the calculations in two different

FIG. 5. Entropic torque between two oblate ellipsoids with half-
axes �10,10,4�R immersed in a solvent of hard spheres with radius
R as sketched in the inset. The angle � parametrizes the rotation of
the inserted ellipsoid and �z denotes the distance between the cen-
ters. The ellipsoids are aligned such that the vector connecting their
centers runs through the north poles of the fixed �lower� ellipsoid.
For this setup the entropic torque M is given by M =−�W /�� �23�.
If �z�8R, the inserted �upper� ellipsoid can be rotated as indicated
in the inset and experiences an entropic torque. Positive values of M
mean that the ellipsoid is pushed toward larger values of �. The
curves end if the two ellipsoids overlap due to the geometrical
constraint. Note that the visible discontinuities in the first derivative
of the curves for �z=12R and �z=14R are not artifacts. They occur
if both ellipsoids come so close that just a single small sphere with
radius R fits in between their surfaces. For �z=16R the distance
between the ellipsoids is large enough so that this effect does not
occur.
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ways, which employ the various approximations of our ap-
proach independently. We have found excellent agreement
between the two routes �see Fig. 2� which provides confi-
dence for the scheme used. Furthermore, we have studied the
depletion potential between two equally sized oblate ellip-
soids. For this case we have illustrated the potential of our
approach. From the resulting depletion potential �see Figs. 3
and 4� one can calculate the entropic force acting on the
centers of the solutes as well as the entropic torque �Fig. 5�.
This provides a picture for the likely pathway of how two
freely floating ellipsoids approach each other under the ac-
tion of entropic forces.

Besides the application to colloidal mixtures of non-
spherical objects and spheres, this approach should prove
useful to studying biological inspired model key and lock
systems �12�, for which depletion interactions between non-
spherical objects and geometrically structured substrates are
considered. The nonspherical objects and the substrates dis-
play a perfect geometrical match, similar to biological mac-
romolecules �key� which can form chemical bonds with a
cavity �lock� only if they are sufficiently close together. The
issue is how the key can be guided into the lock using a
robust, chemically unspecific mechanism. Our present analy-
sis provides first steps toward addressing this issue.
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